On the asymptotic complexity of solving LWE
نویسندگان
چکیده
We provide for the first time an asymptotic comparison of all known algorithms for the search version of the Learning with Errors (LWE) problem. This includes an analysis of several lattice-based approaches as well as the combinatorial BKW algorithm. Our analysis of the lattice-based approaches defines a general framework, in which the algorithms of Babai, Lindner-Peikert and several pruning strategies appear as special cases. We show that within this framework, all lattice algorithms achieve the same asymptotic complexity. For the BKW algorithm, we present a refined analysis for the case of only a polynomial number of samples via amplification, which allows for a fair comparison with lattice-based approaches. Somewhat surprisingly, such a small number of samples does not make the asymptotic complexity significantly inferior, but only affects the constant in the exponent. As the main result we obtain that both, lattice-based techniques and BKW with a polynomial number of samples, achieve running time 2O(n) for n-dimensional LWE, where we make the constant hidden in the big-O notion explicit as a simple and easy to handle function of all LWE-parameters. In the lattice case this function also depends on the time to compute a BKZ lattice basis with block size Θ(n). Thus, from a theoretical perspective our analysis reveals how LWE’s complexity changes as a function of the LWE-parameters, and from a practical perspective our analysis is a useful tool to choose LWE-parameters resistant to all known attacks.
منابع مشابه
Algebraic Algorithms for LWE
The Learning with Errors (LWE) problem, proposed by Regev in 2005, has become an ever-popular cryptographic primitive, due mainly to its simplicity, flexibility and convincing theoretical arguments regarding its hardness. Among the main proposed approaches to solving LWE instances — namely, lattice algorithms, combinatorial algorithms, and algebraic algorithms — the last is the one that has rec...
متن کاملOn the Efficacy of Solving LWE by Reduction to Unique-SVP
We present a study of the concrete complexity of solving instances of the unique shortest vector problem (uSVP). In particular, we study the complexity of solving the Learning with Errors (LWE) problem by reducing the Bounded-Distance Decoding (BDD) problem to uSVP and attempting to solve such instances using the ‘embedding’ approach. We experimentally derive a model for the success of the appr...
متن کاملLazy Modulus Switching for the BKW Algorithm on LWE
Some recent constructions based on LWE do not sample the secret uniformly at random but rather from some distribution which produces small entries. The most prominent of these is the binary-LWE problem where the secret vector is sampled from {0, 1}∗ or {−1, 0, 1}∗. We present a variant of the BKW algorithm for binary-LWE and other small secret variants and show that this variant reduces the com...
متن کاملOn the complexity of the Arora-Ge Algorithm against LWE
Arora & Ge [5] recently showed that solving LWE can be reduced to solve a high-degree non-linear system of equations. They used a linearization to solve the systems. We investigate here the possibility of using Gröbner bases to improve Arora & Ge approach. Introduction The Learning With Errors (LWE) Problem was introduced by Regev in [27, 26]. It is a generalisation for large primes of the well...
متن کاملOn the complexity of the BKW algorithm on LWE
This work presents a study of the complexity of the Blum-Kalai-Wasserman (BKW) algorithm when applied to the Learning with Errors (LWE) problem, by providing refined estimates for the data and computational effort requirements for solving concrete instances of the LWE problem. We apply this refined analysis to suggested parameters for various LWE-based cryptographic schemes from the literature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015